

15EC44

Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 Signals and Systems

Time: 3 hrs .
Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find and sketch the even and odd component of the signal

$$
\begin{aligned}
\mathrm{x}(\mathrm{t}) & =1 & & -1 \leq \mathrm{t} \leq 1 \\
& =2 & & 1 \leq \mathrm{t} \leq 2 \\
& =0 & & \text { Otherwise }
\end{aligned}
$$

(06 Marks)
b. Determine whether the signal $x(n)=\left(\frac{1}{2}\right)^{n} u(n)$ is Energy signal or power signal and also find the energy or power.
(04 Marks)
c. The continuous time signal $x(t)$ shown in Fig.Q1(c). Sketch the following signal.
(i) $x(t) u(1-t)$
(ii) $\mathrm{x}(\mathrm{t})[\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-$
${ }_{\wedge_{x}(t)}^{\text {(iii) } x(t)}[u(t+1)-u(t)]$
(06 Marks)

2 a. Determine whether the signal $x(n)=\cos \left(\frac{n \pi}{8}\right) \sin \left(\frac{n \pi}{4}\right)$ is periodic or non periodic. If periodic, find the fundamental period.
(04 Marks)
b. Fig.Q2(b) shows a staircase dine signal $x(t)$ that may be viewed as the superposition of three rectangular pulses. Starting with a template of the rectangular pulse $g(t)$ shown in Fig.Q2(b). Construct the waveform of $x(t)$ and express $x(t)$ in terms of $g(t)$.

Fig.Q2(b)
(08 Marks)
c. The output of a discrete-time system is related to its input $\mathrm{x}[\mathrm{n}]$ as follows :

$$
\mathrm{y}[\mathrm{n}]=2 \mathrm{x}(\mathrm{n}+2)+3 \mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)
$$

Determine whether it is (i)Memoryless
(ii) Stable
(iii) Causal
(iv) Time Invariant (04 Marks)

Module-2

3 a. Derive the expression for convolution sum.
b. Evaluate the discrete-time convolution sum

$$
\mathrm{Y}[\mathrm{n}]=2[\mathrm{u}(\mathrm{n}+2)-\mathrm{u}(\mathrm{n}-4)] *\{\mathrm{u}[\mathrm{n}+1]-\mathrm{u}[\mathrm{n}-4]\}
$$

c. State and prove the commutative property of convolution sum.

OR

4 a. An LTI system has the impulse response $h(t)=e^{-2 t} u(t+2)$. Determine the system output $y(t)$ if the input signal $x(t)=e^{-3 t} u(t-1)$.
(10 Marks)
b. State and prove the associative and distributive properties of Convolution Integral. (06 Marks)

Module-3

5 a. Consider the interconnection of Four LTI system, as depicted in Fig.Q5(a). The impulse responses of the systems are $h_{1}(n)=u[n], h_{2}[n]=u[n+2]-u[n]$ and $h_{3}(n)=\delta(n-2)$, $h_{4}[n]=\alpha^{n} u[n]$. Find the impulse response $h[n]$ of the overall system.
(06 Marks)

b. For each of the following impulse responses, determine whether corresponding system is
(i) Memoryless (ii) Causal
(iii) Stable. Justify your answers.

$$
\begin{aligned}
& \mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}+1)-\mathrm{u}(\mathrm{t}-1) \\
& \mathrm{h}(\mathrm{n})=2^{\mathrm{n}} \mathrm{u}[-\mathrm{n}]
\end{aligned}
$$

(06 Marks)
c. Evaluate the step responses for the LT1 systems represented by the following impulse responses:
(i) $\mathrm{h}(\mathrm{n})=\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}[\mathrm{n}]$
(ii) $h(t)=e^{-|t|}$
(04 Marks)

6 a. Determine the DTFS coefficients of the periodic signal depicted in Fig.Q6(a).

Fig.Q6(a)
(08 Marks)
b. Determine the Fourier series representation of

$$
\begin{equation*}
x(t)=2 \sin (2 \pi t-3)+\sin (6 \pi t) \tag{08Marks}
\end{equation*}
$$

Module-4

7 a. Use the linearity property to determine the Fourier representation of the signal

$$
x(t)=2 e^{-t} u(t)-3 e^{-2 t} u(t)
$$

(04 Marks)
b. State and prove differentiation in time domain property of CTFT.
(04 Marks)
c. Determine the time-domain signal $\mathrm{x}(\mathrm{t})$ corresponding to the frequency domain signal

$$
\begin{equation*}
x(j w)=\frac{-j w}{(j w)^{2}+3 j w+2} \tag{08Marks}
\end{equation*}
$$

OR

8 a. Find DTFT of the signal $x[n]=\left(\frac{1}{3}\right)^{n} u[n+2]$
(04 Marks)
b. Suppose $x(t)=3 \sin (2 \pi t)+\cos (\pi t)+\sin (4 \pi t)$.

Determine the condition on the sampling interval T_{s} so that each $\mathrm{x}(\mathrm{t})$ is uniquely represented by the discrete-time sequence $x(n)=x\left(n T_{s}\right)$.
(03 Marks)
c. Find the Inverse DTFT of $X\left(e^{j \Omega}\right)=\frac{\frac{5}{6} e^{-\mathrm{j} \Omega}+5}{1+\frac{1}{6} \mathrm{e}^{-\mathrm{j} \Omega}-\frac{1}{6} \mathrm{e}^{-\mathrm{j} 2 \Omega}}$

Module-5

9 a. Define ROC. Explain properties of ROC with example.
(06 Marks)
b. Find the Z-transform of the signal

$$
x(n)=\left(n\left(-\frac{1}{2}\right)^{n} u[n]\right) *\left(\frac{1}{4}\right)^{-n} u[-n]
$$

(10 Marks)

10 a. Determine the transfer function and impulse response for the causal LTI system described by the difference equation $y[n]-\frac{1}{4} y(n-1)-\left(\frac{3}{8}\right) y(n-2)=-x[n]+2 x[n-1]$
b. Find the inverse Z-transform of $X(z)=e^{z^{2}}$, with ROC all z except $|z|=\infty$.

